Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod
Todos os trabalhos publicados foram gentilmente enviados por estudantes – se também quiseres contribuir para apoiar o nosso portal faz como o(a) Leonardo Fernandes e envia também os teus trabalhos, resumos e apontamentos para o nosso mail: geral@notapositiva.com.
Se tens trabalhos com boas classificações, envia-nos por mail pois só assim o nosso site poderá crescer.Email para envio: geral@notapositiva.com |
Agrupamento de Escolas Morgado Mateus
Física e Química A
Relatório
APL 2.1 – 1ªparte Soluções: Como se preparam?
Autor: -Leonardo Fernandes 10ºC Nº17 Docente: Alcinda Anacleto Data de realização: 18 de Janeiro de 2013 Data de entrega: 25 de Janeiro de 2013No dia 17 de Janeiro de 2013 (quinta feira), na aula de Física e Química A, realizámos uma atividade experimental cujo objetivo consistiu em preparar 100 mL de uma solução aquosa de sulfato de cobre (II) com concentração de 0,2 mol dm-3 e, a partir dessa, preparar por diluição, 250 mL de outra solução de sulfato de cobre (II) com concentração 0,04 mol dm-3, com fator de diluição 5 da primeira já preparada.
-Preparar 100 mL de uma solução aquosa de sulfato de cobre (II) anidro, com concentração 0,2 mol dm-3, a partir do soluto sólido;
-Preparar uma solução por diluição da 1ª já preparada;
- Aprender a trabalhar no laboratório e manusear materiais.
Uma solução é uma mistura homogénea de um ou mais solutos e um solvente, que constituem uma só fase, sem fronteiras entre as partículas do soluto e do solvente. O solvente, ou fase dispersante, é o componente da mistura que satisfaz a condição de se encontrar no mesmo estado físico da solução, ou se o estado físico dos componentes da solução for o mesmo, ter uma maior quantidade de substância que o soluto, ou solutos. O soluto, ou fase dispersa, é o componente da solução que não tem inicialmente o mesmo estado físico da solução ou que, tem quantidade de substância que o solvente. Numa solução as partículas do soluto não são maiores que 1 nm de diâmetro, não sedimentam e não podem ser separadas pelo processo de filtração. Estas misturas homogéneas quando atravessadas por luz, não causam qualquer fenómeno ou alteração na trajetória da luz.
A composição quantitativa de uma solução traduz as proporções dos constituintes que se misturam para originar a solução e pode ser expressa por relações diversas como: concentração (molar), concentração mássica, percentagem em volume, fração molar e partes por milhão (bilião ou trilião).
Nesta experiência usou-se a concentração molar para exprimir as relações entre as quantidades de soluto, n, e o volume da solução, v. Assim quando se calcula a concentração molar, a unidade padrão é o mol m-3, podendo a unidade de volume variar.
O mol é a quantidade de matéria de um sistema que contém tantas entidades elementares quantos são os átomos contidos em 0,012 Kg de Carbono 12. Pode-se ainda concluir que o número de entidades elementares contidas em 1 mol corresponde à constante de Avogrado, cujo valor é 6,021023 mol.
Massa Molar (M) é a massa (em gramas) de um número de partículas igual à constante de Avogrado.
O soluto que se utilizou nesta experiência prático-laboratorial é um composto químico denominado sulfato de cobre (II) na sua forma anidra, sendo a sua fórmula química CuSO4. Este composto é muito usado na agricultura e jardinagem porque mata fungos.
Os conceitos de diluição e fator de diluição também foram muito importantes para realizar esta atividade prático-laboratorial. A diluição é o acto físico-químico de tornar uma solução menos concentrada em partículas de soluto através do aumento do solvente. O fator de diluição corresponde à relação entre o volume da solução depois de diluída, e o volume da solução antes de ser diluída, equivalente a .
- Balança de precisão (± 0.001 g).
- Garrafa de esguicho com água desionizada.
-Espátula
-Copo de 100 mL
-Vareta de vidro
-Proveta
-Balão volumétrico de 250 mL
-Balão volumétrico de 100mL
-Funil
-Pipetador
-Pipeta volumétrica de 25 mL
-Proveta de 25 mL
-CuSO4 (Sulfato de cobre (II))
Execução
-1ª Solução:
- 2ª Solução:
1ª Solução: Cálculo da massa de sulfato de cobre (II), CuSO4
m=?
C= 0,200 mol dm-3
V= 100 mL 0,100 dm3
0,200= n= 0,200 0,100 n= 0,0200 mol
M(CuSO4)= 65,546 + 32,065 + 415,9994 M(CuSO4)= 159,6086
n= m= n M m= 0,0200 159,6086 m= 3,19 g
2ªsolução: Cálculo do volume de solução a retirar da solução anterior
Ci= 0,2 mol dm-3 Vi= 100 mL 0,100 dm3 ni= 0,0200 mol
f (Fator de diluição)=5
Cf=? Vf= 250 mL 0,250 dm3 nf=?
f= Cf= Cf= 0,04 mol dm-3
Cf= n soluto= Cf V solução n soluto=0,04 0,250 = 0,01 mol
Ci= V solução= V solução= = V solução= 0,05 dm3 50 cm3
No final, eu e o meu grupo, conseguimos preparar uma primeira solução de sulfato de cobre (II) com concentração de 0,200 mol dm-3 e preparar outra solução a partir dessa com fator de diluição 5. Observamos que a solução mais concentrada era caracterizada por um tom de azul mais escuro do que a solução menos concentrada.
Nesta atividade laboratorial foram cumpridos todos os objetivos inicialmente propostos. Preparámos com sucesso uma solução de 100 mL de CuSO4 e também fomos bem sucedidos na tarefa de preparar outra solução de 250 mL com fator de diluição 5, a partir da primeira solução. Assim concluí que quanto maior for o fator de diluição, menor é o valor da concentração.
Analisando a atividade penso que é muito importante termos certos cuidados com vários aspetos experimentais. Primeiro, é essencial medir rigorosamente a quantidade de soluto e o volume da solução visto que queremos obter uma concentração conhecida. O meu grupo teve os devidos cuidados com as medições feitas na balança e com a posição dos olhos quando se tratou de medições de volume.
Para esta tarefa laboratorial ser efetuada corretamente também é necessário o uso correto do material de laboratório, nomeadamente do material volumétrico, que foi utilizado para obter uma maior exatidão. Nisto, o meu grupo teve algumas dificuldades em trabalhar com a pipeta volumétrica pois os elementos do grupo nunca tinham trabalhado com aquele material.
Durante a atividade, eu pude concluir que é necessário dissolver bem o soluto antes de perfazer o volume. Se não o fizermos não iremos obter a concentração desejada. Este passo não foi inteiramente bem sucedido pelo meu grupo.
Ainda a salientar que é importante lavar bem o copo e o restante material utilizado e colocar as águas de lavagem no balão volumétrico, com o objetivo de colocar toda a massa medida de CuSO4 no balão volumétrico, evitando a diminuição da concentração.
Ao realizar os cálculos conclui que o ao diminuir a quantidade de soluto (n), a concentração também diminui, isto se o volume se mantiver.
No final, com as soluções preparadas podemos observar que quanto maior a concentração de uma solução mais intensa é a cor.
-SIMÕES, Teresa; QUEIRÓS, Maria e SIMÕES, Maria; 2010, Química em contexto, Porto Editora, Porto
-http://quimicaensinada.blogspot.pt/2011/07/dispersoes-coloides-suspensoes-e.html, consultado em 18/1/2013
-http://pt.wikipedia.org/wiki/Dilui%C3%A7%C3%A3o, consultado em 18/1/2013